Skip to main content

About us


Hi! I am Aayan Khan an Aeronautical engineer from India. 'Physics In Flux' is a physics and science blog where I share fascinating and mind-bending concepts of physics and science and try to make them as accurate as possible and easier to read and understand.

I was always fascinated by physics and science in general. Now, through this blog 'Physics In Flux' I am trying to share my entire passion and genuine. with the world. If you are a passionate and curious science geek like me, you would enjoy the content of 'Physics In Flux'.

What you can expect from physics in class?

  • You can expect well-researched physics, and science topics that will excite your curiosity.
  • Sometimes just my ideas and questions. along with a slight philosophical touch.
  • Also, some spelling mistakes here and there. And I hope you will forgive me for that.

So, consider this as a welcoming space to learn, share, and ponder upon the mysteries of the universe, and also get knowledgeable and wise through physics and science.

Be well.

Thank You.

(By the way sorry for 'THAT' Hi!)


Comments

Popular Posts

The Electrifying Life of Michael Faraday: From Apprentice to Scientific Giant.

In the annals of scientific history, few names shine as brightly as Michael Faraday. A man of humble beginnings, Faraday's life journey is a testament to the power of curiosity, determination, and unquenchable passion for science. His groundbreaking work in the fields of electromagnetism and electrochemistry revolutionized the world, earning him a place as one of the most influential experimentalists of the 19th century. Join us as we embark on a journey through the electrifying life of Michael Faraday. Early Life and Struggles Michael Faraday was born on September 22, 1791, in Newington Butts, Surrey, England. He was the third of four children born to a blacksmith and his wife. Faraday's family lived in poverty, and his early education was minimal. He left school at the age of 13 to work as an errand boy, and his prospects for a bright future seemed dim. However, his relentless thirst for knowledge would soon set him on a remarkable path. The Turning Point Faraday's life t...

Strong Nuclear Force - Force Of Nature.

What is a Strong Force?  Strong force is one of the four fundamental forces of the universe. Other forces are gravitational force, weak force, and electromagnetic force. Also, as the name suggests, it is the strongest of all four forces, 100 times stronger than electromagnetic force, million times stronger than weak nuclear force, and 100 trillion trillion trillion times stronger than gravity. The strong force acts at a very, very small distance only, it has a very short range. The strong force is responsible for keeping the nucleons (protons and neutrons) together inside the nucleus of an atom. Credit: Science facts The strong force is responsible for The strong force is responsible for holding proton-proton and proton-neutron together in the nucleus. The nucleus is a dense region of the atom around which the electrons form an electron cloud. Since protons are positively charged, they repel each other. But this repulsion is neutralized, and protons are held together with this stro...

Atom To Cell.

In this blog, we will discuss about the difference between the atom and the cell. Why atom is not the fundamental unit of life? and a journey of an atom to a cell. Firstly, what is the difference between an atom and a cell?  Atom is the fundamental unit of the entire matter, whereas cell is the fundamental unit of living matter. which means every cell is made up of atoms, whereas every atom is not a cell. Size of atom vs the size of cell The size of the atom ranges between 10 to the power minus 14 meters i.e. picometer (pm) to 10 to the power of minus 10 meters i.e. Armstrong. To visualize it, magnify an apple to that of the size of Earth, And now the size of the original apple is probably the size of an atom of this giant apple (from the book: six easy pieces). Whereas the size of the cell ranges between 10 to the power of minus 6 meters i.e. micrometers to 10 to the power of minus 2 meters i.e. centimeters. The overall conclusion about the size of atoms and cells is that an atom ...